

Comparatives, Quantifiers, Proportions: A Multi-Task Model for the Learning of Quantities from Vision

Sandro Pezzelle¹, Ionut-Teodor Sorodoc², Raffaella Bernardi³

^{1,2,3}CIMeC - Center for Mind/Brain Sciences, ³DISI, University of Trento ²Universitat Pompeu Fabra, Barcelona

sandro.pezzelle@unitn.it | sandropezzelle.github.io | quantit-clic.github.io

Motivation

Task & Dataset

Quantification: Operation of expressing *quantitative* information

Research Question

Can 3 ratio-based quantification tasks be modeled by a single, Multi-Task Learning (MTL) neural network from Vision?

- 'There are *more* cars than parking lots': **comparatives**
- '*Most of* the supporters wear blue t-shirts': quantifiers
- '20% of the trees have been planted last year': proportions
- '*Seven* students passed the exam': **numbers**

Comparatives, Quantifiers, Proportions express a comparison or relation **between sets**; Numbers denote cardinality of **one set**

Different age of acquisition [1,2,3], no need of counting for using comparatives and quantifiers in *grounded* contexts [4]

Hypothesis

Cs, Qs, Ps express increasingly-complex steps of **same** ratio-based **mechanism**; *Ns* require different, possibly interfering operation [5]

Dataset

17K (70% train, 10% val, 20% test) synthetic scenes depicting 17 *ratios* targets (animals):non-targets (artifacts) from [6]

Multi-Task Learning Model

Results

MTL outperforms one-task models: sharing weights *helps*!

MTL model approximates human data and makes 'plausible' errors

model	setComp	vagueQ	nTarg		
	accuracy	Pearson r	accuracy	accuracy	
chance/majority	0.470	0.320	0.058	0.132	
one-task-frozen	0.783	0.622	0.210	0.312	
one-task-end2end	0.902	0.964	0.659	0.966	
multi-task-prop	0.995	0.982	0.918	—	
multi-task-number	0.854	0.807	—	0.478	

In-Depth Evaluation

Discussion & References

Sharing a common core boosts performance in all tasks, proving

Introducing number of targets in the pipeline *hurts* performance!

Reversing the architecture

Proportions (.08 acc) > Quantifiers (.32 r) > Comparatives (.65 acc)

Does MTL generalize?

Numbers in the loop

Train w/ 80 combinations, test w/ 17 **unseen** combinations (1/*ratio*)

model	setComp	vagueQ	propTarg
	accuracy	Pearson r	accuracy
chance/majority	0.470	0.320	0.058
one-task-frozen	0.763	0.548	0.068
one-task-end2end	0.793	0.922	0.059
multi-task-prop	0.943	0.960	0.539

X0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	83	-
91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	83	0	0	-
51	0	0	0	0	0	0	0	0	0	0	0	0	17	14	52	0	0	-
41	0	0	0	0	0	0	0	0	0	0	0	0	7	8	68	0	0	-
31	0	0	0	0	0	0	0	0	0	0	0	1	80	1	1	0	0	
21	0	0	0	0	0	0	0	0	0	0	7	74	2	0	0	0	0	
32	0	0	0	0	0	0	0	0	2	6	72	3	0	0	0	0	0	cases
43	0	0	0	0	0	0	0	0	14	39	29	0	1	0	0	0	0	6
11 -	0	0	0	0	0	0	1	3	73	2	0	1	3	0	0	0	0	4
34	0	0	0	0	0	1	65	8	9	0	0	0	0	0	0	0	0	2
23	0	0	0	0	0	11	69	1	1	0	0	0	1	0	0	0	0	(
12	0	0	0	0	1	56	25	0	0	0	0	o	1	0	0	0	0	
13 -	0	0	27	1	39	14	0	0	0	0	0	0	2	0	0	0	0	
14 -	0	0	79	0	2	0	0	0	0	0	0	0	2	о	0	0	0	-
15	0	0	24	56	3	0	0	0	0	0	0	0	0	0	0	0	0	
19	0	0	81	0	0	0	0	0	0	0	0	0	2	0	0	0	0	
0Y -	83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	4	.9	5	.0.	5	2	ŝ	2	~	S	al a	à	1	~	1	~	01	

their (a) interdependency and (b) increasing complexity

Are representations learned from one modality abstract enough to be transferable to different modalities, e.g. *language, sounds*?

References

[1] Odic, D. et al. (2013). Young children's understanding of "more" and discrimination of number and surface area. Journal of Experimental Psychology:Learning, Memory, and Cognition 39(2):451.
[2] Hurewitz, F. et al. (2006). Asymmetries in the acquisition of numbers and quantifiers. Language learning and development 2(2):77–96.

[3] Le Corre, M. and Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition 105(2):395–438.
[4] Halberda,J. et al. (2008). The development of 'most' comprehension and its potential dependence on counting ability in preschoolers. Language Learning and Development 4(2):99–121
[5] Fabbri, S. et al. (2012). The role of numerosity in processing nonsymbolic proportions. The Quarterly Journal of Experimental Psychology 65(12):2435–2446.

[6] Kiani, R. et al. (2007). Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of neurophysiology 97(6):4296–4309.

[7] Pezzelle, S., Bernardi, R., Piazza, M. (*submit.*). Probing the mental scale of quantifiers. Cognition.