

^{1,3}CIMeC - Center for Mind/Brain Sciences, ³DISI, University of Trento ²Department of of Psychology, University of Ghent

Quantities can be expressed by either 'exact' **cardinals** (*one, two, three, four*) or 'fuzzy' **quantifiers** (*no, few, most, all*)

In humans, different cognitive [1] and neural [2] mechanisms: numbers neither necessary nor sufficient for quantifiers

Meaning of both acquired in grounded contexts [3,4]

Our proposal:

Dataset

Single computational architecture (**cross-modal mapping**) for learning meaning of cardinals (Cs) and quantifiers (Qs) from Vision

But, two different objective functions required:

cosine ('fuzzy') for quantifiers
 dot product ('exact') for cardinals

@tweetabstract: #quantification as #crossmodalmapping
from #language to #vision: learning #quantifiers and #cardinals
@sandropezzelle @raffagbernardi @CIMeC_

How many pets are *dogs*? Three / Most

Only-vision Evaluation

Synthetic scenarios containing up to 9 objects representing either **targets** (*dogs*) or **distractors** (*cats*)

GT quantifiers defined by (simplified) **ratios** n_targets/n_total: no = 0%; few < 50%; most > 50%; all = 100%

Different combinations n_targets/n_total in training and testing (e.g. 'few' 1/6, 2/5, 2/7, 3/8 in training; 1/7, 4/9 in testing)

Scenarios: (a) 188 concepts from ImageNet ; (b) VGG-19 CNN feats extracted from all images; (c) 1 centroid vector per concept; (d) PCA; (e) normalization; (f) **sum**

<scenario,quantifier> datapoints: **3008 train**, **1504 test**

Cosine distance and **dot product** between each scenario (e.g. 2/5 *dogs*) and corresponding target object (*dog*)

Cosine effective for Qs (left), dot product for Cs (right)

Cross-modal Mapping

Results & Discussion

output_v Models:

linnn-cosnn-dotmAPP2mAPP2no0.780.65**0.87**0.77few0.590.39**0.68** $\overline{0.51}$ 0.59

	no	few	most	all
no	288	88	0	0
few	141	191	38	6

two

113

136

80

24

111

0

three

54

124

130

72

265

376

four

41

52

145

272

lin: linear mapping

nn-cos: 1-layer NN maximizing cosine similarity (1) between in and out

nn-dot: 1-layer NN making dot product between in and out close to 1 **Retrieval task**: as conjectured, nn-cos overall best model for Qs, nn-dot overall best model for Cs

Best-performing models make 'plausible' errors (ordered scale)

Cross-modal mapping between linguistic representation of target object (word2vec) and visual scenarios representing a given Q/C

Each Q/C (e.g. 'few', 'two') learned as a specific matrix/function

References:

most

all

one

two

three

four

[1] Pietroski et al. 2009. The meaning of 'most': Semantics, numerosity and psychology.
[2] Wei et al. 2014. Dissociated neural correlates of quantity processing of quantifiers ...
[3] Halberda et al. 2008. The development of 'most' comprehension and its potential ...
[4] Barner et al. 2009. Cross-linguistic relations between quantifiers and numerals in language ...

0.59	0.39	0.68	0.51	0.59	0.43	most	0
0.61	0.36	0.60	$\overline{0.29}$	0.62	0.45	all	0
0.75	0.66	1	<u>1</u>	0.33	0.12		one
0.44	0.30	0.38	0.21	0.61	0.45	one	168
0.35	0.15	0.38	0.21	0.57	0.43	two	64
0.38	0.16	0.36	0.13	0.56	$\overline{0.40}$	three	23
0.65	0.47	0.75	0.60	0.76	$\overline{0.61}$	four	10