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What's Quantification?

Operation of quantifying, i.e. expressing quantitative information

7/

< “More than half of the electoral votes were for Trump”

7/

% “Indeed, he got 306 electoral votes out of 538"

7/

% “In percentage, 46.4% of Americans voted for him”

X/

% “Though Clinton got more votes (48.5%), he was elected”

806 trump@ clinton 232

46.4% votes 270 electoral votes to win | 48.5% votes
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Different Ways to Quantify

% Numbers ]_

. count of exact, absolute cardinality of one set
> seven, 72, five, 123, etc.

% Comparatives
> more, same, less
< Quantifiers
> all, most, few, almost all, etc.
% Proportions
> 20%, 85%, thirty-three percent, etc.

. comparison or relation between two sets




ANS vs Counting

7

< Ability of comparing non-symbolic sets (a.k.a. ANS) reported in infants

since youngest age, well before being able to count
> [Piazza & Eger (2016), Xu & Spelke (2000), McCrink & Wynn (2004)]

% Proportional values extracted holistically, i.e. w/out relying on the

pre-computed cardinalities of sets
> [Fabbriet al. (2012), Yang et al. (2015)]

% Inlanguage acquisition, Comparatives (~3.3 yrs) and Quantifiers (3.4-3.6
yrs) acquired before Numbers (3.5-)
> [Odic et al. (2013), Halberda et al. (2008), Le Corre & Carey (2007)]



Hypotheses

% Shared operation underlying Comparison, Vague Quantification, Proportion
> counting not needed and perhaps conflicting

% Increasing-complexity hierarchy of relation-based mechanisms, shown by
evidence from cognition and language acquisition:

> 1. Comparison

> 2. Vague Quantification

> 3. Proportion



Research Questions

% Can ANS-based tasks be learned by a single, Multi-Task Learning model?

*

% Are low-level tasks beneficial to high-level ones, and vice versa?

*
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Materials

Artificially built (11.9K train, 1.7K val, 3.4K test)

3-20 total objects (animals + artifacts) from [15] in the scene

17 ratios, i.e. proportions of animals (8 > 50%, 8 < 50%, 1 = 50%)
Number cases balanced for ratio

Size, position, orientation randomly varied

K/ X/ X/ X/ X/
L SR X SR X S X SR X 4

Comparative: less
> Proportion: 40%
Quantifier: ?




How many of the Objects are Animals?

[Pezzelle, Bernardi, Piazza (under review). Cognition]

Behavioral experiment:

% 340 scenes (balanced ratios)
My oM % 1,000ms exposure to scene
M ow M .« e
v % 30 participants
o < 10.2K responses
Analyses:

7

% glmer (6 main, 3 random)

/7

< proportion best predictor!




Quantifiers and Proportions: Distribution
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One-Task Models

% one-task-frozen
> one-task models fed with ‘frozen’ visual features (average of last Conv layer of
Inception v3 CNN pre-trained on ImageNet)

< one-task-end2end
> one-task models fed with raw images and embedding Inception v3 CNN
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Results

model setComp | vagueQ | propTarg nTarg
accuracy | Pearsonr | accuracy || accuracy
chance/majority 0.470 0.320 0.058 0.132
one-task-frozen 0.783 0.622 0.210 0.312
one-task-end2end 0.902 0.964 0.659 0.966
multi-task-prop 0.995 0.982 0.918 -
multi-task-number 0.854 0.807 — 0.478




MIL Errors

vagueQ
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Does it Generalize?
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Proportional Layer

/7
X4

2-dimensional PCA analysis on
32-d last layer of proportional
task (before softmax)
Proportions clearly clustered
together and ordered clockwise




Conclusions

% Sharing a common core boosts performance in all relation-based tasks,
confirming they underlie same operation (relation between sets)

% Exact number is a different operation — interference

% MTL able to generalize to unseen combinations to some extent



Ongoing Work

% Do the results hold when training-testing within other modalities?
% Is the core of the model (encoding quantities) modality-independent,
and thus transferable?
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QUANTIties in Images and Texts at CLIC lab (QUANTIT-CLIC)

https://quantit-clic.github.io/



https://quantit-clic.github.io/

Thank you!

Few / Some / Many questions?
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